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Theory of dilution effect in orbital ordered system is presented. The eg orbital model without spin degree of
freedom and the spin-orbital coupled model in a three-dimensional simple-cubic lattice are analyzed by the
Monte Carlo simulation and the cluster expansion method. In the eg orbital model without spin degree of
freedom, reduction in the orbital ordering temperature due to dilution is steeper than that in the dilute magnet.
This is attributed to a modification of the orbital wave function around vacant sites. In the spin-orbital coupled
model, it is found that magnetic structure is changed from the A-type antiferromagnetic order into the ferro-
magnetic one. Orbital-dependent exchange interaction and a sign change in this interaction around vacant sites
bring about this phenomenon. Present results explain the recent experiments in transition-metal compounds
with orbital dilution.
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I. INTRODUCTION

Impurity effect in correlated electron system is one of the
attractive themes in recent solid-state physics.1,2 The well-
known example is doping of nonmagnetic impurity in
high-Tc superconducting cuprates; a small amount of substi-
tution of Cu by Zn dramatically destroys the superconductiv-
ity. Nonmagnetic impurity effect in the low-dimensional
gapped spin system is another example. A few percent dop-
ing of Zn or Mg, which does not have a magnetic moment,
into two-leg ladder systems, e.g., SrCu2O3, and spin-Peierls
systems, e.g., CuGeO3, induces long-range orders of antifer-
romagnetism �AFM�.3–7 Impurity effect in charge and orbital
ordered states is also studied in the colossal magnetoresistive
manganites.8–11 It is reported in a so-called half-doped man-
ganite La0.5Ca0.5MnO3 that a few percent substitution of Mn
by Cr collapses the charge or orbital order �OO� associated
with the AFM one and induces a ferromagnetic �FM� metal-
lic state. Because there is no eg electrons in Cr3+, unlike
Mn3+ with one eg electron, Cr is regarded as an impurity
without orbital degree of freedom.

Recently, impurity doping effect in an orbital ordered
state is examined experimentally in a more ideal material.
Tatami et al.12 studied substitution effect in an orbital or-
dered Mott insulator KCuF3 with the three-dimensional �3D�
perovskite crystal structure. A Cu2+ ion in the cubic-
crystalline field shows the �t2g�6�eg�3 electron configuration
where one hole has the orbital degree of freedom. The long-
range OO, where the dy2−z2- and dz2−x2-like orbitals are
aligned with a momentum �� ,� ,��, was observed at room
temperatures by several experiments. Since the AFM spin
ordering temperature is 39 K, which is much lower than the
OO temperature ��1200 K�, a substitution of Cu by Zn,
which has an electron configuration �t2g�6�eg�4, is regarded as
an orbital dilution. It was revealed by the resonant x-ray
scattering experiments in KCu1−xZnxF3 that the OO tempera-
ture decreases with doping of Zn monotonically and the dif-
fraction intensity at �3/2 3/2 3/2� disappears around x=0.45.
At the same Zn concentration, the crystal symmetry is
changed from the tetragonal to the cubic one. That is to say,
the OO disappears around x=0.45. In dilute magnets, e.g.,

KMn1−xMgxF3, the x dependence of the magnetic ordering
temperature as well as the critical concentration where the
magnetic order vanishes are well explained by the percola-
tion theory.13,14 On the contrary, the critical concentration in
KCu1−xZnxF3, where the OO disappears, is much smaller
than the site-percolation threshold in a 3D simple-cubic lat-
tice, xp=0.69. These experimental observations imply that
the dilute OO may belong to a different class of diluted sys-
tems beyond the conventional percolation theory.

Dilution effect in orbital ordered state was also examined
experimentally in a mother compound of the colossal mag-
netoresisitive manganites, LaMnO3. The long-range OO,
where the d3x2−r2- and d3y2−r2-like orbitals align with a mo-
mentum �� ,� ,0�, appears below 780 K. The A-type AFM
order, where spins are aligned ferromagnetically in the xy
plane and are antiferromagnetically along the z axis, is real-
ized at 140 K. Substitution of Mn3+ by Ga3+, which has a
3d10 electron configuration, corresponds to both the orbital
and spin dilutions.15–20 From the x-ray diffraction and x-ray
absorption near-edge structure �XANES� experiments, the
tetragonally distorted MnO6 octahedra become regular cubic
ones around the Ga concentration x=0.6. That is, the OO
disappears around x=0.6 which is smaller than the percola-
tion threshold xp=0.69 for the simple-cubic lattice. Differ-
ence between LaMn1−xGaxO3 and KCu1−xZnxF3 is seen in the
magnetic structure. Blasco et al.16 observed from the
neutron-diffraction experiments in LaMn1−xGaxO3 that the
FM component appears by substitution of Ga for Mn and
increases up to x=0.5. This change in the magnetic structure
from the A-type AFM to FM was also confirmed by the
magnetization measurements. This FM component cannot be
attributed to the itinerant electrons through the double ex-
change interaction since the electrical resistivity increases
with increasing x. These phenomena are in contrast to the
conventional dilute magnets where the ordering temperature
is reduced but the magnetic structure is not changed. Farrell
and Gehring15 presented a phenomenological theory for the
magnetism in LaMn1−xGaxO3. They noticed that a volume in
a GaO6 octahedron is smaller than that in a MnO6. Under an
assumption that the Mn 3d orbitals around a doped Ga tend
toward the Ga, the magnetic structure change was examined.
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In this paper, a microscopic theory of dilution effects in
the eg orbital degenerate system is presented. We study the
dilution effects in the eg-orbital Hamiltonian without the spin
degree of freedom, termed as HT �see Eq. �10��, and the spin
and eg orbital coupled one, termed as HST �see Eq. �9��. The
classical Monte Carlo �MC� method in a finite-size cluster, as
well as the cluster expansion �CE� method, is utilized. It is
known that in the classical ground state of HT without im-
purity, a macroscopic number of orbital states are degener-
ated due to frustrated nature of the orbital interaction. We
demonstrate numerically that this degeneracy is lifted at fi-
nite temperature. It is shown that the OO temperature de-
creases rapidly with increasing dilution. From the system
size dependence of the orbital correlation function in the MC
method, the OO is not realized at the impurity concentration
x=0.2. The results obtained by the CE method also show
rapid quenching of OO by dilution in comparison with dilute
spin models. These results interpreted that orbitals around
impurity sites are changed so as to gain the remaining bond
energy. This is a consequence of the bond-direction-
dependent interaction between the intersite orbitals. In the
analyses of the spin-orbital coupled model, it is shown that
the A-type AFM structure realized in x=0 is changed into the
FM one by dilution. This is explained by changing a sign of
the magnetic exchange interaction due to the orbital modifi-
cation around impurity sites. Implications of the present mi-
croscopic theory and the experimental results in
KCu1−xZnxF3 and LaMn1−xGaxO3 are discussed.

In Sec. II, the model Hamiltonian for the eg orbital degree
of freedom in a cubic lattice and the spin-orbital coupled one
are introduced. In Sec. III, the classical MC simulation and
the CE method are presented. Results of the numerical analy-
ses in HT and HST are presented in Secs. IV and V, respec-
tively. Section VI is devoted to summary and discussion. A
part of the numerical results for the eg orbital model have
been briefly presented in Ref. 21.

II. MODEL

Doubly degenerate eg orbital degree of freedom is treated
by the pseudospin �PS� operator with a magnitude of 1/2.
This operator is defined by

Ti =
1

2 �
s���

di�s
† ����di��s, �1�

where di�s is the annihilation operator of an electron with
spin s�=↑ ,↓� and orbital ��=3z2−r2 ,x2−y2� at site i and �
are the Pauli matrices. Occupied orbital is represented by an
angle � of PS. The eigenstate of the z component of PS with
an angle � is

��� = cos��

2
	�d3z2−r2� + sin��

2
	�dx2−y2� . �2�

For example, �=0, 2� /3, and 4� /3 correspond to the states
where the d3z2−r2, d3y2−r2, and d3x2−r2 orbitals are occupied by
an electron, respectively. It is convenient to introduce the
linear combinations of the PS operators defined by

�i
l = cos�2�nl

3
	Ti

z − sin�2�nl

3
	Ti

x, �3�

with l= �x ,y ,z� and a numerical factor �nx ,ny ,nz�= �1,2 ,3�.
These are the eigenoperators for the d3l2−r2 orbitals.

It is known that dominant orbital interactions in
transition-metal compounds are the electronic exchange in-
teraction and phononic one. The former is derived from the
generalized Hubbard-type model with the doubly degenerate
eg orbitals,

Hele = �

ij����s

�tij
���di�s

† dj��s + H.c.� + U�
i�

ni�↑ni�↓

+
1

2
U� �

i����

ni�ni�� +
1

2
K �

i����ss�

di�s
† di��s�

† di�s�di��s,

�4�

where ni�=�sni�s=�sdi�s
† di�s. We define the electron transfer

integral tij
��� between the pair of the nearest-neighboring

�NN� sites—the intraorbital Coulomb interaction U, the in-
terorbital one U�, and the Hund coupling K. Through the
perturbational expansion with respect to the NN transfer in-
tegral under the strong Coulomb interaction, the spin-orbital
superexchange model is obtained.22,23 This is given as

Hexc = − 2J1�

ij�

�3

4
+ Si · Sj	�1

4
− �i

l� j
l	 − 2J2�


ij�
�1

4
− Si · Sj	

��3

4
+ �i

l� j
l + �i

l + � j
l	 , �5�

where Si is the spin operator at site i with a magnitude of 1/2
and l represents a bond direction connecting sites i and j.
Amplitudes of the superexchange interactions are given as
J1�=t2 / �U−3K�� and J2�=t2 /U� where t is the transfer inte-
gral between the d3z2−r2 orbitals along the z direction. Ferro-
magnetic �antiferromagnetic� spin alignment is favored in J1
�J2� term. Here, a relation U=U�+K is assumed in order to
simplify the problem. We note that by introducing this as-
sumption, the J1 term, which is the main term in Eq. �5�, and
the forms of the orbital operators in the J2 term, i.e., �i

l� j
l and

�i
l+� j

l, are not changed.
The phononic interaction between the orbitals is derived

from the orbital-lattice coupled model given by

HJT = − gJT�
im

Qi
mTi

m + �
k	


k	

2
�pk	

� pk	 + qk	
� qk	� , �6�

where the superscript m takes x and z. The first term repre-
sents the Jahn-Teller �JT� coupling with a coupling constant
gJT. Two distortion modes in a O6 octahedron with the Eg
symmetry are denoted by Qi

z and Qi
x. The second term is for

the JT phonon where qk	 and pk	 are the phonon coordinate
and momentum, respectively, and 
k	 is the phonon fre-
quency. Subscripts k and 	 are the momentum and the pho-
non mode, respectively. Here, the spring constant between
the NN metal and oxygen ions is taken into account. It is
worth noting that an O ion is common in two NN Mn ions in
the perovskite crystal structure. Thus, a vibration of the O
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ion induces the effective intersite orbital interaction between
the Mn ions. For convenience, the first and second terms in
Eq. �6� are denoted by Horb-latt and Hlatt, respectively. By
introducing the canonical transformation defined by

q̃k	 = qk	 −
2

�
k	
�
m

gk	m
� T−k

m �7�

and neglecting the noncommutability between Hlatt and q̃k	,
the orbital and lattice degrees of freedom are decoupled
as24–27

HJT = 2g�

ij�

�i
l� j

l + H̃latt. �8�

The first term in this equation gives the intersite orbital in-
teraction with a coupling constant g=gJT

2 / �3KS�, where KS is

a spring constant and H̃latt is given by the second term in Eq.
�6�, i.e., Hlatt, where the phonon coordinate and momentum
are replaced by q̃k	 and its canonical conjugate momentum
p̃k	, respectively.

The model Hamiltonian studied in the present paper is
given by a sum of the above two contributions. Quenched
impurity without spin and orbital degrees of freedom is de-
noted by a parameter �i which takes zero �one� when site i is
occupied �unoccupied� by an impurity. The Hamiltonian is
given as

HST = − 2J1�

ij�

�i� j�3

4
+ Si · Sj	�1

4
− �i

l� j
l	

− 2J2�

ij�

�i� j�1

4
− Si · Sj	�3

4
+ �i

l� j
l + �i

l + � j
l	

+ 2g�

ij�

�i� j�i
l� j

l . �9�

Numerical results in this Hamiltonian are presented in Sec.
V. We also study dilution effect in the orbital model without
spin degree of freedom. This model is given by taking Si ·Sj
in Eq. �9� to be zero. This procedure may be justified in the
diluted orbital system of KCu1−xZnxF3 where the Néel tem-
perature �TN� is much below the OO temperature TOO. The
explicit form of the eg orbital model without spin degree of
freedom is given by

HT = 2J�

ij�

�i� j�i
l� j

l , �10�

where J�=2g+3J1 /4−J2 /4� is the effective coupling con-
stant. Numerical results of this model Hamiltonian are pre-
sented in Sec. IV.

III. METHOD

In order to analyze the model Hamiltonian introduced
above by using the unbiased method, we adopt mainly the
MC simulation in finite-size clusters. Because there is a se-
rious negative sign problem in the quantum MC simulation
for this model, we have performed the classical MC one. The
quantum effects are discussed in Sec. VI. The orbital PS
operator is treated as a classical vector defined in the Tz

−Tx plane, i.e., Ti
z= �1 /2�cos �i and Ti

x= �1 /2�sin �i, where �i
is a continuous variable. As well as the conventional Me-
tropolis algorithm, the Wang-Landau �WL� method is
utilized.28 This is suitable for the present spin-orbital coupled
model where the energy scales of the two degrees of freedom
are much different with each other. In order to calculate the
density of state, g�E�, with high accuracy in the WL method,
we take that the minimum-energy edge Emin in g�E� is a little
higher than the ground-state energy EGS and assume g�EGS
�E�Emin�=0. As a result, the present MC simulation is
valid above a characteristic temperature Tmin which is deter-
mined by �Emin−EGS�. This situation will be discussed in Sec.
IV in more detail. The simulations have been performed in
L�L�L cubic lattices �L=12–18� with the periodic-
boundary condition. In the Metropolis method, for each
sample, 3�104–1�105 MC steps are spent for measure-
ment after 8�103–2�104 MC steps for thermalization.
Physical quantities are averaged over 20–80 samples at each
parameter set. In the WL method, the final modification
factor28 is set to be f final=exp�2−27�. After calculating the
density of states, 2�107 MC steps are spent for measure-
ment.

To supplement the classical MC simulation, the ordering
temperatures are also calculated by utilizing the CE method.
We apply the CE method proposed in Ref. 29 to the present
orbital model. For a given impurities configuration ��
 in a
lattice with N sites, the OO parameter is given as

M��
 = TrN�
i

�iTi
z
N��
, �11�

with the density matrix


N��
 =
e−�H��


TrN e−�H��

, �12�

where TrN represents the trace over the PS operator at sites
with �i=1 in a crystal lattice and H��
 is the Hamiltonian
with impurity configuration ��
. The OO parameter per site is
obtained by averaging about all possible impurity configura-
tion ��
 as

M =
1

�1 − x�N

M��
���
, �13�

where x is the impurity concentration. In the CE method, a
cluster consisting of m sites, termed as �m
, is considered,
and the PS operators which do not belong to �m
 are replaced
by stochastic variables �i. Here we take �Ti

x ,Ti
z�= �0,�i�. The

effective Hamiltonian thus obtained is denoted as H��
�m
��

where ��
 is a set of �i, and the corresponding density matrix
is


��
�m
��
 =
exp�− �H��
�m
��
�

Tr�m
 exp�− �H��
�m
��
�
, �14�

where Tr�m
 represents the trace over the PS operators in a
cluster �m
. We expand M��
 into a series of cluster averages
as follows:
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M��
 = �
m=1

N

�
�m


�
k=1

m

�
�k


�− 1�k−m Tr�k
�� �
i��k


�iTi
z	�

��


��
�k
��
� ,

�15�

where ��m
 is taken over all possible clusters consisting of m
sites and ��k
 is taken over all subclusters of k sites belonging
to a given �m
. The variable �i takes 1/2 or −1 /2 by a prob-
ability of

P��i� = ��i,1/2�1 + 2M

2
	 + ��i,−1/2�1 − 2M

2
	 . �16�

By solving Eqs. �13�–�16� self-consistently, the order param-
eter and the ordering temperature are obtained as a function
of impurity concentration. In the present study, we adopt the
CE method in the two-site cluster approximation, i.e., m=2.
It was shown that even in the two-site cluster approximation,
the results by the CE method show good accuracy; as for the
transition temperature in the ferromagnetic Ising model in a
simple-cubic lattice, deviation from the results by the high-
temperature expansion is about 10%. For the critical impu-
rity concentration in the ferromagnetic Heisenberg model in
a simple-cubic lattice, deviation from the percolation theory
is within a few percent.29 To compare the results in the clas-
sical MC simulation, the ordering temperature is also calcu-
lated in the classical version of the CE method where the
traces in Eqs. �14� and �15� are replaced by integrals with
respect to the continuous variable Ti

z between 1/2 and −1 /2.

IV. DILUTION IN THE eg ORBITAL MODEL

A. Results without dilution

In this section, numerical results for dilution effects in the
eg orbital Hamiltonian �10� are presented. First, we show the
results in the MC simulation without impurity. It is known
that there is a macroscopic degeneracy in the mean-field
�MF� ground state in HT without impurity.30 This degeneracy
is classified into the following two types. �i� Consider a stag-
gered OO with two sublattices, termed as A and B, and mo-
mentum Q= �� ,� ,��. In the MF ground state, the PS angles
in the sublattices are given by ��A ,�B�= �� ,�+�� with any
value of �. Such continuous rotational symmetry is unex-
pected from the Hamiltonian HT where any continuous sym-
metry does not exist. �ii� Consider an OO with Q
= �� ,� ,�� and ��A ,�B�= ��0 ,�0+�� and focus on one direc-
tion in three-dimensional simple-cubic lattice, e.g., the z di-
rection. The MF energy is preserved by changing all PS in
each layer perpendicular to the z axis independently as
��0 ,�0+��→ �−�0 ,−�0−��. These are schematically shown
in Fig. 1. Both types of degeneracy are understood from the
momentum representation of the orbital interaction,

HT = 2J�
k

�k
†Ê�k��k, �17�

with �k= �Tk
z ,Tk

x� and the 2�2 matrix Ê�k�. By diagonaliz-

ing Ê�k�, we obtain the eigenvalues

E��k� = cx + cy + cz � �cx
2 + cy

2 + cz
2 − cxcy − cycz − czcx,

�18�

where cl=cos akl with a lattice constant a. The lower eigen-
value E−�k� has its minima along �� ,� ,��− �0,� ,�� and
other two equivalent directions.31 At the point �, the two
eigenvalues E+�k� and E−�k� are degenerate. That is, the or-
bital states corresponding to these momenta are energetically
degenerate in the MF level. These degeneracies observed in
the classical ground states are lifted and the long-range order
appears when thermal and quantum fluctuations are taken
into account. This is the so-called order-by-fluctuation
mechanism and has been studied by applying the spin-wave
analyses to the orbital model.30,32,33

Here we demonstrate the degeneracy lifting and appear-
ance of the long-rage OO by the MC method. We introduce,
for impurity concentration x, the staggered orbital correlation
function

MOO�x� =
1

N�1 − x����i

�− 1�i�iTi�2�1/2
�19�

and the angle correlation function

Mang�x� =
1

N�1 − x����i

�− 1�i�i cos 3�i�2�1/2
, �20�

where 
¯� represents the MC average and N=L3. The orbital
correlation at the momentum Q= �� ,� ,�� is represented by
MOO�x�, and the angle correlation Mang�x� takes one when
the orbital PS angle is 2�n /3 with an integer number n.
Therefore, MOO�x� and Mang�x� are utilized as monitors for
lifting of the types �ii� and �i� degeneracies, respectively.
Temperature dependences of MOO�x=0� for various L are
shown in Fig. 2�a�. With decreasing temperature, calculated
results for all L show a sharp increase around T /J=0.35.
This increase becomes sharper with the system size L. Below
T /J=0.08, MOO�x=0� takes a temperature-independent value
of about 0.47. This flat behavior is attributed to the lowest-
energy edge Emin for the density of state calculated in the WL
method, as explained in Sec. III. An extrapolated value of
MOO�x=0� toward T=0 is close to 0.5 which indicates that
the type �ii� degeneracy is lifted and the OO with the mo-
mentum Q= �� ,� ,�� is realized. Temperature dependences
of Mang�x=0� presented in Fig. 2�b� increase monotonically
toward one in the low-temperature limit. Almost no-size de-
pendence is seen in Mang�x=0�. Therefore, the type �i� de-
generacy is also lifted and the PS angle is fixed. Both results

x

z

T x

z

a ) ( b )

FIG. 1. �Color online� �a� Schematic of the degenerate PS con-
figurations of the type �i� degeneracy and �b� that of the type �ii�
one.
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indicate the long-range OO where the momentum is Q
= �� ,� ,��, and the PS angles are ��A ,�B�= ��0 ,�0+�� with
�0=2�n /3.

The temperature at which MOO�x=0� and Mang�x=0�
change abruptly is around T /J=0.33, corresponding to the
OO temperature TOO�x=0�. In more detail, this temperature
is determined by the finite-size scaling for the correlation
length. This is calculated by the second-moment method,

	�x� =
1

2 sin�akmin/2�
�MOO�x�2 − Mkmin

�x�2

Mkmin
�x�2 , �21�

with

Mkmin
�x� =

1

N�1 − x����i

ei�Q−k�·ri�iTi�2�1/2
, �22�

where kmin= �2� /L ,0 ,0�. The scaling relation for 	�x� is

	�x� = LF�L1/��T − TOO�x�
� , �23�

where � is the critical exponent for correlation length and F
is the scaling function. The correlation lengths 	�x=0� /L for
various sizes cross with each other at TOO�x=0�. In Fig. 3,
we plot 	�x=0� /L as a function of L1/��T−TOO�x=0��. The
scaling analyses work quite well for L=10, 12, and 14. The
OO temperature TOO�x=0� and the critical exponent � are
determined by the least-squares fitting for the polynomial
expansion. We obtain as TOO�x=0� /J=0.344�0.002 and �
=0.69–0.81, although statistical errors are not enough to ob-
tain the precise value of �.

B. Dilution effect

Now, we examine impurity effect in the OO. In Fig. 4, we
present the staggered orbital correlation function MOO�x� for

several impurity concentration x. Numerical data are ob-
tained by the Metropolis algorithm in the classical MC
method and the system size is chosen to be L=18. First, we
focus on the region of x�0.15. As shown above, MOO�x
=0� abruptly increases at TOO�x=0��0.34J and is saturated
to 0.5 in the low-temperature limit. By introducing impurity,
MOO�x�0� does not reach 0.5 even at T /J=0.01, and its
saturated value in low temperatures gradually decreases with
increasing x. Although the system sizes are not sufficient to
estimate MOO�x� in the thermodynamic limit, MOO�x�0� at
zero temperature does not show the smooth convergence to
0.5, in contrast to the diluted spin models. Beyond x=0.15,
results are different qualitatively; although MOO�x� starts to
increase around a certain temperature �e.g., T /J�0.24 at x
=0.2�, saturated values of MOO�x� in the low-temperature
limit are rather small. In order to compare the size depen-
dences of MOO�x�, temperature dependences of MOO�x
=0.1� and MOO�x=0.2� for several system sizes are presented
in Fig. 5. In Fig. 5�a� for x=0.1, MOO�x� for several sizes
crosses around T /J=0.25 below which MOO�x� increases
with L. On the other hand, in Fig. 5�b� for x=0.2, MOO�x�
monotonically decreases with L in all temperature range.
This difference above and below x=0.15 is also seen in the
results of the correlation length. In Fig. 6, correlation lengths
at x=0.15 and x=0.2 are compared. In x=0.15, 	�x� for dif-
ferent sizes crosses around T /J=0.25. As shown in the inset
of Fig. 6�a�, the scaling analyses work well. From this analy-
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FIG. 2. �Color online� �a� System size dependence of the orbital
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ses for 	�x�, the OO temperature in x=0.15 is obtained as
TOO�x=0.15� /J=0.248�0.003. On the other hand, in x
=0.2 �see Fig. 6�b��, 	�x� for different sizes do not seem to
cross with each other at a certain temperature, and the scal-
ing analyses do not work. From the above numerical results,
it is thought of that the long-range OO disappears around
0.15�x�0.2.

The impurity concentration x dependence of TOO�x� ob-
tained by the MC and CE methods are presented in Fig. 7.
Two kinds of the CE methods, where the PS operators are
treated as classical vectors and quantum operators, are car-
ried out. These are termed as the classical and quantum CE
methods, respectively. In both cases, we adopt the two-site
cluster. Here we note again that even in the two-site cluster
approximation, the obtained critical concentration in the fer-
romagnetic Heisenberg model in a simple-cubic lattice is in
good agreement with the percolation threshold. As a com-
parison, the Néel temperatures in the 3D XY model obtained
by the classical MC method and those in the 3D Heisenberg
model by the classical CE method are also plotted in the
same figure. It is shown that the decrease in TOO�x� by the
MC method is much steeper than that in TN�x� in the XY and
Heisenberg models. As shown in the size dependences of
MOO�x� and 	�x� at x=0.2, it is thought of that the long-range
OO is not realized at this impurity concentration. A rapid
decrease in TOO�x� in comparison with the spin ordering tem-
peratures is also obtained by the CE method. The OO tem-
perature monotonically decreases with x and disappears
around x=0.4 in the quantum CE calculation and around 0.5
in the classical CE one. The critical impurity concentrations
obtained by the MC and CE methods are much smaller than
the percolation threshold xp=0.69 in the 3D simple-cubic
lattice.

Let us explain the physical picture of the orbital dilution.
Snapshots of the PS configuration in the MC simulation are
shown in Figs. 8�a� and 8�b� for x=0.1 and 0.3, respectively.
The staggered OO with the orbital angle ��A ,�B�= �0,�� is
seen in the background of Fig. 8�a�. At the neighboring sites
of the impurities indicated by the open circles, PS vectors tilt
from the angle of �0,��. This deviation of the PS angles is
not only due to the thermal fluctuation. Let us focus on the
NN sites along the x direction of an impurity which occupies
the down PS sublattice. In almost all these sites, PS angles
are changed from 0 to a positive angle ��. This kind of tilting
from �0,�� becomes remarkable at x=0.3. Then, we explain
the microscopic mechanism of this PS tilting due to dilution
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�see Fig. 9�. Let us focus on a PS at a certain site termed as
i. The interaction acting on this site is considered by the MF
approximation where we assume the staggered OO with the
PS angle �0,�� except for the site i and an impurity site. The
Hamiltonian which concerns the interaction acting on this
site is given as

HT
�i� = 2J �

l=�x,y,z�

�i+êl

�i+êl

l + �i−êl
�i−êl

l ��i
l = − �

l=�x,y,z�
hl · Ti, �24�

where êl is a unit vector along l in the simple-cubic lattice
and hl= �hl

x ,hl
z� are the MF. In the case of no dilution �Fig.

9�a��, the mean fields are given by hx=J�−�3 /2,−1 /2�, hy
=J��3 /2,−1 /2�, and hz=J�0,−2�, and the Hamiltonian in
Eq. �24� is reduced to

HT
�i� = 3JTi

z. �25�

This implies that the stable PS configuration at the site i is
�i=�. Then, we introduce an impurity at site i− êx and con-
sider the PS at site i �Fig. 9�b��. The x component of the MF
in the case without impurity is changed into hx=J�−�3 /4,
−1 /4� and others are not. The effective interaction in Eq.
�24� is given as

HT
�i� =

J

4
�11Ti

z − �3Ti
x� , �26�

implying that the stable orbital angle at site i is �i��
−0.15. This PS tilting due to dilution is attributed to the fact
that the orbital interaction explicitly depends on the bond
direction and is the essence of the diluted orbital systems.
This is highly in contrast to the dilute spin system where
dilution does not cause specific spin tilting around the impu-

rity site but simply increases thermal spin fluctuation since
the number of the interacting bond is reduced.

V. DILUTION IN THE SPIN-ORBITAL MODEL

A. Results without dilution

In this section, we examine the dilution effect in the spin-
orbital coupled model described by HST in Eq. �9�. First, we
briefly introduce the MF calculation for the spin and orbital
structures at x=0. The two sublattice structures for both the
spin and orbital ordered states are considered, and the PS
angles in sublattices A and B are assumed to be ��A ,�B�
= �� ,−��. We obtain the ferromagnetic spin order in the case
of J1 /J2�3 and the A-type AFM one in J1 /J2�3. In the
A-type AFM state, the orbital PS angle is uniquely deter-
mined as �=cos−1�2J2 / �5J1−J2+6g�
. By taking the MF re-
sults into account, for the following MC calculations, we
choose the parameter set as �J1 /J2 ,g /J2�= �2.9,5�. In these
values, the OO appears at much higher temperature than the
Néel one, and the A-type AFM is realized near the phase
boundary between FM and A-type AFM. These are suitable
to demonstrate the magnetic structure change due to dilution,
although this change is observed generally in a wide param-
eter region. The MC simulation results in the realistic param-
eter set for LaMnO3 will be introduced in Sec. VI.

In the MC simulation, we utilize the WL method in L
�L�L site cluster �L=6–10� with the periodic-boundary
condition. The spin operator Si in the Hamiltonian is treated
as a 3D classical vector with an amplitude of 1/2. In the
simulation, 2�107 MC steps are spent for measurement af-
ter calculating the histogram for the density of states. Physi-
cal quantities are averaged over ten MC samples at each
parameter set. We notice again the lowest-energy edge Emin
in the density of states which is introduced in Sec. III. In Fig.
10, we show the Emin dependence of the total energy, E, and
A-type AFM correlation function, MA-AFM�x� , defined by

MA-AFM�x� =
1

N�1 − x����i,l �− 1�il�iSi�2�1/2
, �27�

where il for l= �x ,y ,z� represents the l component of the
coordinate at site i. The results in Fig. 10�a� imply that the
temperature below which the total energy is flat is deter-
mined by an adopted value of Emin. This temperature is de-
noted as Tmin from now on. As shown in Fig. 10�b�, in the
case of Emin=−9.93 �−10.03�, an obtained MA-AFM�x=0� be-
low Tmin is about 50% �75%� of its maximum value of 1/2.
That is, Tmin at Emin=−10.03 is lower than the Néel tempera-
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i

FIG. 9. �Color online� �a� A schematic PS configuration without
impurity and �b� that with an impurity. The filled circle represents
an impurity.

 

( a )  x = 0 . 1

( b )  x = 0 . 3

T x

z

FIG. 8. �Color online� �a� A snapshot in the MC simulation for
the PS configuration at x=0.1 and �b� that at x=0.3. Filled circles
indicate impurities.
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ture of the A-type AFM. Although a saturated value of
MA-AFM�x=0� is less than 0.5, this result is enough to exam-
ine the ordering temperature. We chose Emin=−10.03 for L
=10 at x=0 and, for other cases, appropriate values of Emin
where a large magnitude of MA-AFM�x� is obtained in low
temperatures. Then, we focus on the change in the magnetic
ordering temperature due to dilution.

First, we show the results without impurities. In Fig. 11,
calculated MOO�x=0�, MA-AFM�x=0�, and the ferromagnetic
correlation function defined by

MFM�x� =
1

N�1 − x����i

�iSi	2�1/2
�28�

are presented. The staggered orbital correlation function
MOO�x=0� abruptly increases around T /J2=2.5 which corre-

sponds to the OO temperature TOO�x=0�. This value is con-
sistent with the previous results obtained in the model
Hamiltonian HT; the effective orbital interaction in the
present Hamiltonian HST with paramagnetic state is Jorb=g
+3J1 /4−J2 /4 where Si ·S j in HST is replaced by zero. The
obtained TOO�x=0�=2.5J2 corresponds to 0.3Jorb in the
present parameter set. This value is consistent with TOO�x
=0�=0.344J obtained in Sec. IV �see Fig. 2�a��. In Fig. 11,
the angle correlation function Mang�x=0� starts to increase at
TOO�x=0�. With decreasing temperature, at around T /J2
=0.35��TN�x=0��, the second transition occurs. The orbital
correlation function MOO�x=0� decreases abruptly, and
MA-AFM�x=0� grows up. The ferromagnetic correlation func-
tion MFM�x=0� shows a small hump structure around TN�x
=0�. That is, TN�x=0� is the Néel temperature of A-type
AFM. The PS angle correlation Mang�x=0� decreases and
almost becomes zero below TN�x=0�. This result indicates
that due to the magnetic transition, the PS angle is changed
into ��A ,�B���� /2,−� /2� which is consistent with the MF
results. In Fig. 12, size dependences of MA-AFM�x=0� and
MOO�x=0� are presented. With increasing L, changes in
MOO�x=0� and MA-AFM�x=0� at TN�x=0� become steep, al-
though a saturated value of MA-AFM�x=0� is still less than 0.5
due to a finite value of �Emin−EGS� as mentioned above.

B. Dilution effect

Impurity concentration x dependences of MA-AFM�x� and
MFM�x� are presented in Fig. 13. With increasing x from the
x=0 case, MA-AFM�x� decreases gradually and almost disap-
pears around x=0.12. On the other hand, MFM�x�, which
shows a small hump structure around T /J2=0.28 at x=0,
increases with x and takes about 0.3–0.4 in the case of x
�0.12. That is to say, the magnetic structure is changed from
A-AFM into FM by dilution. At x=0.09, both MA-AFM�x� and
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MFM�x� coexist down to the lowest temperature in the
present simulation. This is supposed to be a canted magnetic
order or a magnetic phase separation of the FM and A-type
AFM phases.

To clarify the mechanism of the magnetic structure
change due to dilution, the effective magnetic interaction and
the PS configuration are examined. Here, the AFM stacking
in the A-type AFM structure is chosen to be parallel to the z
axis. The effective magnetic interaction Ji

l is defined such
that the Hamiltonian HST in Eq. �9� is rewritten as HST
=�
ij�Ji

lSi ·Sj. The explicit form of the effective interaction is
given as

Ji
z = 2�J1 + J2�Ti

zTj
z + 2J2�Ti

z + Tj
z� +

3

2
J2 −

1

2
J1, �29�

where we consider a NN pair of sites i and j�=i+ êz� along
the z direction, since we are interested in the magnetic struc-
ture along z, and J1 �J2� is the ferromagnetic �antiferromag-
netic� exchange interaction introduced in Sec. II. A contour
map of the effective interaction Ji

z and a snapshot of the PS
configurations in the same xy plane are presented in Figs.
14�a� and 14�b�, respectively. Signs of Ji

z in almost all region
are positive �antiferromagnetic�, reflecting the A-AFM struc-
ture. At the neighboring sites of the impurity along the y
direction, Ji

z’s are negative �ferromagnetic�. Away from the
impurity, PSs are ordered as �Tx in the staggered OO. Near
the impurity, PSs tilt from �Tx and finite components of Tz

appears. This tilting of PS is seen in the results of HT as
explained in Sec. IV. Based on these numerical simulations,
we explain the mechanism of the magnetic structure change
due to dilution. Let us start from the staggered orbital or-
dered state of �Tx ,Tz�= ��1 /2,0�. We introduce one impurity
at a site i0 which belongs to the Tx=1 /2 sublattice and focus

on the PS configuration and the effective exchange interac-
tion at sites i0+ êm and i0+ êm+ êz for m= �x ,y� �see Fig. 15�.
As explained in Sec. IV, orbital dilution induces the PS tilt-
ing so as to gain the energies of the bonds where an impurity
does not occupy. Thus, PS at site i0+mê tilts from �=3� /2
to 3� /2+���−��� for m=x�y� with a positive angle ��.
Since the orbital interaction is the staggered one, the bilinear
term Ti0+êm

z Ti0+êm+êz

z in Eq. �29� is negative for both the m
=x and y cases. As for the linear term in Eq. �29�, there is a
relation �Ti0+êx

z +Ti+êx+êz

z �=−�Ti0+êy

z +Ti+êy+êz

z �. That is, contri-
bution of this linear term to the spin alignment along z,
which is determined by a sum of Ji0+êx

z and Ji0+êy

z , is canceled
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out. Therefore, when the first term in Eq. �29� overcomes the
positive constant 3J2 /2−J1 /2, Ji

z becomes negative and the
ferromagnetic alignment along the z direction is stable
around the impurity sites.

VI. SUMMARY AND DISCUSSION

In this section, we discuss implications of the present nu-
merical calculations on the recent experimental results in the
transition-metal compounds. First we have remarks on the
relation between the calculated results of HT shown in Sec.
IV and the experiments in KCu1−xZnxF3.12 As shown in Sec.
IV, TOO�x� rapidly decreases with increasing x, in compari-
son with dilute magnets �see Fig. 7�. Although the critical
concentration �x�0.2–0.5�, where the OO disappears, de-
pends on the calculation methods, that is, MC and CE, these
values are far below the percolation threshold �xp=0.69�.
This result is consistent qualitatively with the Zn concentra-
tion dependence of the OO temperature in KCu1−xZnxF3
where OO vanishes around x=0.45. One of the discrepancies
between the theory and the experiments is seen in their quan-
titative values of the critical impurity concentration where
OO disappears. Some of the reasons of this discrepancy may
be attributed to the anharmonic JT coupling and the long-
range PS interactions due to the spring constants beyond the
NN ions and so on, both of which are not taken into account
in the present calculation. The former subject, i.e., the anhar-
monic JT coupling, induces the anisotropy in a bottom of the
adiabatic potential of the Qx-Qz plane and prevents the PS
tilting around impurity sites. This effect on the reduction in
TOO�x� was studied briefly in Ref. 21. It was shown that in
the realistic parameter values, the reduction in TOO�x� be-
comes moderate by the anharmonic coupling, but it is still
steeper than those in dilute magnets. Another factor which
may explain the discrepancy between the theory and the ex-
periments is the quantum aspect for the orbital degree of
freedom. In the results obtained by the quantum CE method
as shown in Fig. 7, the critical x for TOO�x�=0 is larger than
the results by other two classical calculations for the orbital
model and is close to the experimental value of x=0.45. This
may be due to the fact that quantum fluctuation in low tem-
peratures weakens the low-dimensional character in the OO
state and prevents a collapse of OO against dilution. As men-
tioned previously, the negative sign problem for the quantum
MC method in this model prevents us to examine the quan-
tum effect in the diluted eg system. However, a kind of quan-
tum effects in the dilute orbital system was examined in the
two-dimensional orbital compass model.34,35 It was shown
that the reduction in TOO�x� due to dilution is weaker than
that in the classical orbital model.

We briefly mention the orbital PS tilting due to dilution.
Similar phenomena are known as quadrupolar glass state in
molecular crystals where a different kind of interactions be-
tween molecules with quadruple moment coexists.36 A kind
of glass state in terms of the quadrupole moment appears
with increasing randomness for the interactions. We suggest
a possibility that the present observed PS tilting accompa-
nied with the lattice distortion of ligand ions is able to be
detected experimentally. One of the most adequate experi-

mental techniques are the pair-distribution function method
by the neutron-diffraction experiments and x-ray absorption
fine structure �XAFS� where the incident x-ray energy is
tuned at the absorption edge of the impurity ions. This ob-
servation may work as a check for the present scenario in the
dilute orbital system.

Next we discuss the implications of the calculated results
in Sec. V to the experimental results in LaMn1−xGaxO3.15–20

By analyzing the spin-orbital coupled Hamiltonian HST, we
find that the magnetic structure is changed from the A-AFM
order into the FM one. This calculation qualitatively explains
the experimental results in LaMn1−xGaxO3 from the micro-
scopic point of view. In Sec. V, the parameter set is chosen to
be close to the values for the A-type AFM/FM phase bound-
ary in order to demonstrate clearly the magnetic structure
change due to the orbital dilution. Here we briefly introduce
the numerical results obtained in the realistic parameter val-
ues. To evaluate the realistic values, we calculate the OO
temperature, the Néel temperature by the MF approximation,
and the spin-wave stiffness by the spin-wave approximation
from HST, and we compare the experimental results in
LaMnO3. Then, we set up the parameters as �J1 /J2 ,g /J2�
= �2.5,5�. The x dependences of the magnetic transition tem-
peratures are presented in Fig. 16. With increasing x from
x=0, TN�x� of the A-type AFM order gradually decreases,
and around x=0.2–0.3, the A-type AFM is changed into the
FM order which remains at least to x=0.4. In semiquantita-
tive sense, this result is consistent with the experimental
magnetic phase diagram in LaMn1−xGaxO3. However, one of
the discrepancies is that the canted phase survives up to x
=0.4 in LaMn1−xGaxO3. This difference between the theory
and the experiments is supposed to be due to the t2g spins in
Mn sites and the antiferromagnetic superexchange interac-
tion between them which are not included explicitly in the
present calculation. This interaction stabilizes the A-type
AFM phase in comparison with the FM one and maintains
the canted phase up to a higher x region.

In summary, we present a microscopic theory of dilution
effects in the eg-orbital degenerate system. We analyze the
dilution effects in the eg-orbital Hamiltonian without spin
degree of freedom, HT, and the spin and eg-orbital coupled
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FIG. 16. �Color online� Impurity concentration dependence of
the A-type AFM transition temperature, TN�x�, and the FM one,
Tc�x�, calculated in the realistic parameter values for
LaMn1−xGaxO3. The parameters and the system size are chosen to
be �J1 /J2 ,g /J2�= �2.5,5� and L=8, respectively.
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Hamiltonian, HST. The classical MC simulation and the CE
method are utilized. The results obtained in Sec. IV are sum-
marized. Reduction in the OO temperature due to dilution is
much steeper than that of the dilute magnets and the perco-
lation theory. From the system size dependence of the orbital
correlation function in the MC method, the OO is not real-
ized at the impurity concentration x=0.2, which is smaller
than the percolation threshold. Tilting of orbital PS around
impurity is responsible for this characteristic reduction in
TOO�x�. This is a consequence of the bond-dependent inter-
action between the intersite orbitals. In Sec. V, dilution ef-
fects in the spin-orbital coupled model are analyzed. The
main result is that the magnetic structure is changed from the
A-type AFM structure into the FM one by dilution. This is
not expected in dilute spin systems without the orbital degree
of freedom. This phenomenon is explained by changing of

the magnetic interaction due to the orbital PS tilting around
the impurity. The present results explain microscopically the
dilution effects in KCu1−xZnxF3 and LaMn1−xGaxO3 and pro-
vide a unified picture for the dilution effect in the orbital
ordered system.
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